Modeling Event Plausibility with Consistent Conceptual Abstraction

Ian Porada¹, Kaheer Suleman², Adam Trischler², and Jackie Chi Kit Cheung¹

¹Mila, McGill University

{ian.porada@mail, jcheung@cs}.mcgill.ca

²Microsoft Research Montréal

{kasulema, adam.trischler}@microsoft.com

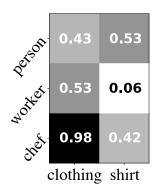
Intro

The likelihood estimates of a pre-trained language model (PTLM) are often used as a **proxy for plausibility**.

We:

- show that these estimates are inconsistent w.r.t.
 conceptual abstractions of an event
- explore how enforcing consistency can improve correlation with human plausibility judgements
- propose two automatic metrics of consistency

Is it plausible an [X] knits a [Y]?



A chef knits clothing.

: Very plausible!

A worker knits a shirt.

: Implausible!

Estimates of RoBERTa-base (fine-tuned to predict probability of event occurrence).

Motivation

Modeling plausibility is **implicit** in:

- Coreference resolution (Hobbs, 1978; Dagan and Itai, 1990; Zhang et al., 2019b)
- Word sense disambiguation (Resnik, 1997; McCarthy and Carroll, 2003)
- Textual entailment (Zanzotto et al., 2006; Pantel et al., 2007)
- Semantic role labeling (Gildea and Jurafsky, 2002; Zapirain et al., 2013)
- Commonsense inference (Gordon et al., 2011; Zhang et al., 2017; Bhagavatula et al., 2020)

Motivation

Understanding natural language requires discerning plausible and implausible events (Wilks, 1975).

E.g., The car is filled with gas, and I'm starting to breathe it in.

Breathe what in?

The gas. (Breathing in a car is implausible.)

Background

Selectional preferences (Evens, 1975; Resnik, 1993; Erk et al., 2010)

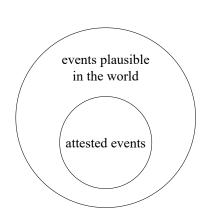
The **semantic preference** of a predicate for an argument (in a certain relation)

• E.g., the relative preference of *knit* for the direct object *shirt*

Reporting bias (Gordon and Van Durme, 2013)

Common events are under-reported in text

• E.g., "a person breathes" is less likely to be attested in a corpus than "a person dies"



Baseline

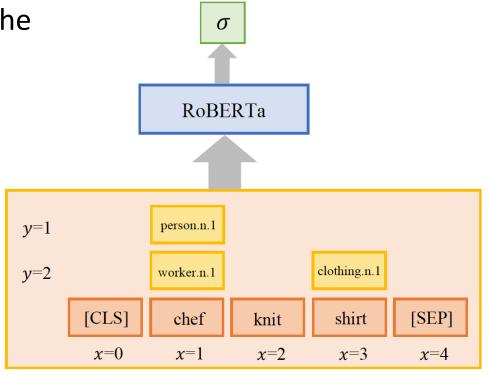
Let an event be represented as a subject-verb-object (s-v-o) triple.

[CLS] chef knit shirt [SEP] RoBERTa

Fine-tune RoBERTa to predict **probability of occurrence** of an event in a corpus.

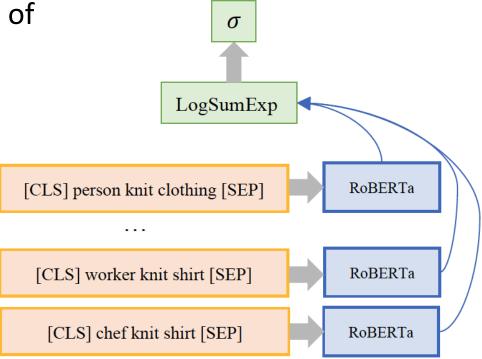
CONCEPTINJECT

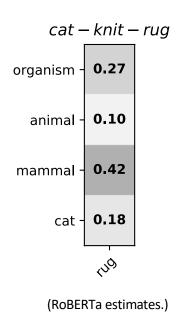
- Introduce a new **token** for each hypernym
 - Initialize by average word embedding of the hypernym's lemma
- Include all hypernyms in the input at training and inference with a new position embedding

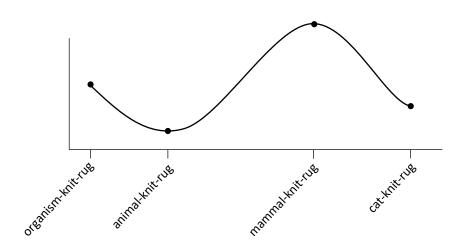


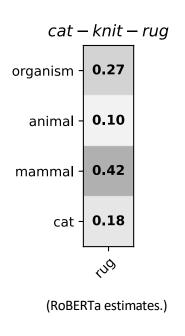
CONCEPTMAX

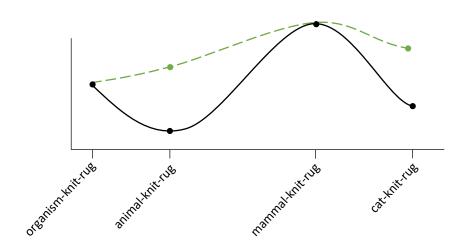
- Take the plausibility estimate of an event to be a soft maximum over the RoBERTa outputs of all abstractions
 - We **sample** three abstractions for tractability
- At inference, take a hard maximum over abstractions

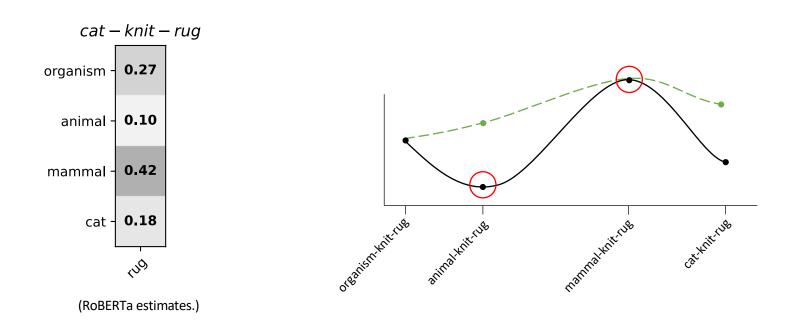




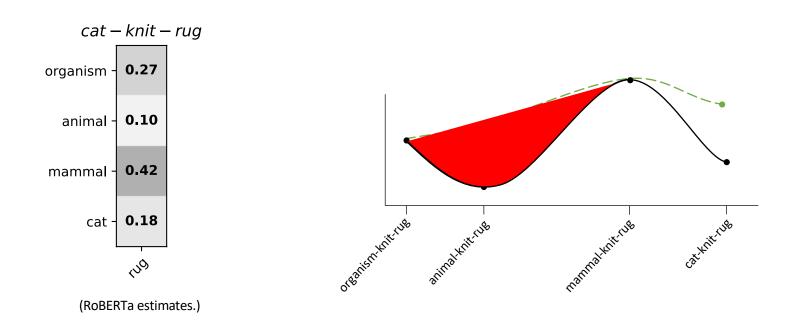








Local Extremum Rate (LER): What percentage of plausibility estimates are local extrema?



Local Extremum Rate (LER): What percentage of plausibility estimates are local extrema?

Concavity Delta (CC Δ): Are estimates for sequential abstractions (a_{i-1} , a_i , a_{i+1}) concave? I.e., average of: $\delta = \begin{cases} \frac{1}{2}(a_{i-1} + a_{i+1}) - a_i & 2a_i < a_{i-1} + a_{i+1} \\ 0 & \text{otherwise} \end{cases}$

Training details

- Dependency parse English Wikipedia
 - extract s-v-o triples as training examples
 - e: attested event (positive)
 - e': random perturbation of e (negative)
- We use **WordNet 3.1** (Miller, 1995) hypernymy relations

e	e'
animal-eat-seed	animal-eat-area
passenger-ride-bus	bus-ride-bus
fan-throw-fruit	group-throw-number
woman-seek-shelter	line-seek-issue

Evaluation datasets

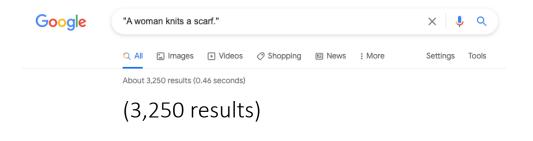
- Physical Event Plausibility (PEP-3K) presented by Wang et al. (2018)
- 20Q: a subset of the Twenty
 Questions dataset, reformatted
 (github.com/allenai/twentyquestions)

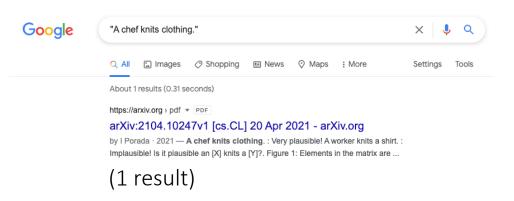
Рер-3к	chef-bake-cookie	√
	dog-close-door	\checkmark
	fish-throw-elephant	X
	marker-fuse-house	X
20Q	whale-breathe-air	✓
	wolf-wear-collar	\checkmark
	cat-hatch-egg	X
	armrest-breathe-air	X

Evaluation datasets

- Physical Event Plausibility (PEP-3K) presented by Wang et al. (2018)
- 20Q: a subset of the Twenty
 Questions dataset, reformatted
 (github.com/allenai/twentyquestions)

Рер-3к	chef-bake-cookie	✓
	dog-close-door	✓
	fish-throw-elephant	X
	marker-fuse-house	X
20Q	whale-breathe-air	✓
	wolf-wear-collar	✓
	cat-hatch-egg	X
	armrest-breathe-air	X





Results

Predicting Human Plausibility Judgements (AUC)

Model	Рер-3к	20Q	Avg.	
n-gram	.51	.52	.52	
GloVe+MLP	.55	.52	.53	
RoBERTa _{Zero-shot}	.56	.57	.56	
RoBERTa	.64	.67	.66	
CONCEPTINJECT	.64	.66	.65	
CONCEPTMAX	.67	.74	.70	

Consistency (lower is more consistent)

	Рер-3к		20Q	
Model	$\overline{CC\Delta}$	LER	$\overline{CC\Delta}$	LER
n-gram	.06	.50	.07	.50
GloVe+MLP	.03	.61	.03	.49
RoBERTa _{Zero-shot}	.13	.70	.12	.65
RoBERTa	.09	.52	.08	.51
CONCEPTINJECT	.08	.52	.07	.51
CONCEPTMAX	.02	.00	.02	.00

Conclusion and future work

- Language model estimates of occurrence are inconsistent across conceptual abstractions in a lexical hierarchy
- Enforcing consistency improves correlation with human judgements

From here:

- How might we design a non-monotonic model of plausibility?
- How might we apply these ideas to a practical, downstream application?

Please see the paper for references and additional details.