Can a Gorilla Ride a Camel? Learning Semantic Plausibility from Text

Ian Porada¹, Kaheer Suleman², and Jackie Chi Kit Cheung¹

¹Mila, McGill University {ian.porada@mail, jcheung@cs}.mcgill.ca ²Microsoft Research Montreal kasulema@microsoft.com

Can a person ride a camel?

Three camels in a line: a person rides on the leading camel.

(Busson, 2007)

Can a {person}_{subj} {ride}_{verb} a {camel}_{obj}?

Three camels in a line: a {person}_{subj} {rides}_{verb} on the leading {camel}_{obj}.

(Busson, 2007)

Can a gorilla ride a camel?

???

(FFNR, 2018)

Can a lake ride a camel?

(Schmaltz, 2018)

???

Modeling semantic plausibility

• Necessary for many NLU tasks

- Hard coreference resolution (Peng et al., 2015)
- Paragraph reconstruction (Li and Jurafsky, 2017)

Existing work

- Distributional cues **fail** at modeling semantic plausibility (Wang et al., 2018)
 - We can improve performance by injecting explicit commonsense knowledge
 - Weight
 - Size
 - Sentience
 - ...

Our points

- 1. Distributional representations are **sufficient** for semantic plausibility in the **supervised setting**.
- 2. Solving semantic plausibility without manual supervision is an interesting problem.
 - Formulation & baseline

- We focus on physical plausibility
 - Is a given *subject-verb-object* (s-v-o) triple physically plausible?
- Wang et al.'s (2018) Physical Plausibility Dataset
 - 3,062 s-v-o triples
 - 150 verbs
 - 450 nouns

Wang et al.'s (2018) Physical Plausibility Dataset

Event	Plausible?	
bird-construct-nest		
gorilla-ride-camel		
bottle-contain-elephant	X	
lake-fuse-tie	×	

Methods

- NN (Van de Cruys, 2014)
 - Baseline
 - MLP over GloVe embeddings
- BERT (Devlin et al., 2019)
 - Large, pretrained language model
 - Treat input as a sequence, "<subj> <verb> <obj>"
 - Finetune entire model with MLP head

Supervised setting (Wang et al., 2018)

Train

Test

Results (supervised)

Model	Accuracy
Random	0.50
NN (Van de Cruys, 2014)	0.68
NN+WK* (Wang et al., 2018)	0.76
Fine-tuned BERT	0.89

*WK = weight, size, sentience, ...

Results (supervised)

- But did we solve semantic plausibility?
 - Performance depends on the coverage of the training set vocabulary (Moosavi and Strube, 2017)
 - Susceptible to annotation artifacts (Gururangan et al., 2018; Poliak et al., 2018)
 - Not necessarily learning the **desired relation** (Levy et al., 2015)

Proposed, unsupervised setting

Proposed, unsupervised setting

- Requires going **beyond a distributional representation**
- We take **attested** events to be **plausible**
 - woman-ride-camel
- And pseudo-negative **random events** to be **implausible**
 - Sample subject, verb, and object independently by occurrence frequency
 - band-produce-camel

Proposed, unsupervised setting

English Wikipedia

NELL 604m (Carlson et al., 2010)

Results (unsupervised)

Model	Wikipedia		NELL	
	Valid	Test	Valid	Test
Random	0.50	0.50	0.50	0.50
NN	0.53	0.52	0.50	0.51
BERT	0.65	0.63	0.57	0.56

Results (unsupervised)

- But the performance is **limited**
 - Succumbs to reporting bias (Gordon and Van Durme, 2013)
 - Lacks hierarchical generalization
 - grandfather-ride-camel
 - teammate-ride-camel
 - woman-ride-camel
 - man-ride-camel
 - Could be improved with better negative sampling

Conclusion

- Distributional signals sufficient for semantic plausibility in a supervised setting
- Improving performance without manual supervision is an interesting direction
 - A testbed for injecting commonsense knowledge
 - An incidental signal (Roth, 2017)

